Rigid couplings are an essential component in mechanical engineering, connecting two shafts to transmit power and torque while maintaining precise alignment. These couplings are designed to eliminate relative motion between shafts, ensuring efficient power transmission and reducing wear and tear on machinery. They have many advantages, including simple structure, easy assembly, convenient maintenance, low cost, high torque capacity, torsional stiffness, and zero backlashes. These couplings do not have the ability to cushion and compensate for the relative displacement of the two axes, requiring the two axes to be installed in strict alignment. But the structure is simple, low manufacturing cost, easy to install, dismantle, maintenance, can ensure that the two axes have a high degree of centering, transfer torque is larger, so widely used.
There are several types of rigid couplings available, each with its own unique design and applications. In this article, we will explore some of the most common types of rigid couplings used in various industrial settings.