ATO-DCM250B/260B

INTRODUCTION

ATO

DCM250B/260B is a low-cost three-dimensional electronic compass, using hard and soft magnetic calibration algorithm, so that the compass can eliminate the influence of magnetic field through the calibration algorithm in the environment with magnetic field interference. The DCM250B&260B integrates a three-axis fluxgate sensor, calculates the heading in real time through the central processor, and uses a three-axis accelerometer to perform heading compensation for a wide range of tilt angles, ensuring that the compass can also provide high accuracy at tilt angles up to $\pm 85^{\circ}$ Heading data. The electronic compass integrates high-precision MCU control and diversified output methods. The standard interfaces include RS232/RS485/TTL and other interfaces, and other communication interfaces can be customized.

The DCM250B/260B is small size, low in power consumption, and can be used in many fields such as stable antennas, vehicles, system integration, etc. The high shock resistance and high reliability also make the compass work normally in extremely harsh environments, and is more suitable for today's Precision measurement integrated control system.

MAIN FEATURES

- ★ Heading accuracy: 0.8°
- ★ Inclination resolution: 0.1°
- ★ Temperature range: -40° C ~ $+85^{\circ}$ C
- \star With hard magnetic, soft magnetic and tilt compensation
- ★ Standard RS232/RS485/TTL output interface

APPLICATION

★ Mapping

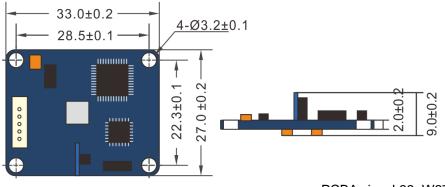
- \star Navigation surveying \star Satellite antenna searching
- ★ Antenna servo control ★ Infrared imager
- ★ ROV underwater robot navigation

- ★ Inclination measurement range: ±85°
- ★ Inclination accuracy: 0.2°
- \star DC 5V power supply
 - g 🛛 🛧 GPS combined navigation
 - ★ Special occasion robots
 - ★ Laser rangefinder
 - ★ Oceanographic survey instrument

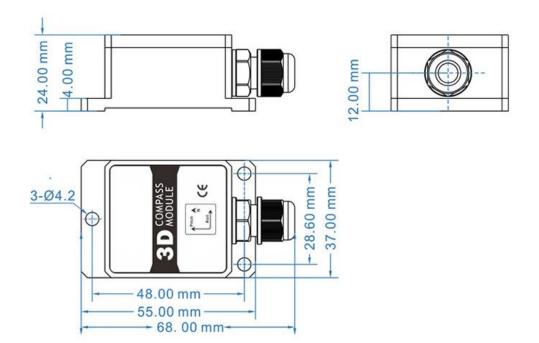
SPECIFICATIONS

DCM250B		Parameters
Compass heading	Heading accuracy	0.8°
parameters	Resolution	0.1°
Compass		0.1°<15°(measure range)
inclination	Pitch accuracy	0.2°<30°(measure range)

DCM250B/DCM260B HIGH ACCURACY 3D COMPASS


parameter	Pitch range	0.3°<60°(measure range) ±85°
		0.1°<15°(measure range)
	Rolling accuracy	0.2°<30°(measure range)
	Troining accuracy	0.3°<60°(measure range)
	Roll range	±85°
	Resolution	0.1°
	Tilt compensation angle	
	range	<40°
	Hard iron calibration	Yes
	Soft iron calibration	Yes
calibration	Magnetic field interference calibration method	Rotate horizontally one round (2D calibration)
	PCBA size	L33×W27×H9mm
	RS232/RS485/TTL	PCBA: 4PIN 30cm terminal cable
	Start delay	<50mS
	Output rate	20Hz/s
Interface	Baud rate	2400 to 19200baud
	Output format	Binary high-performance protocol
		(default) DC+5V
	Supply voltage	(optional) DC 9~36V
Power supply	Current (MAX)	45mA
	Ideal mode	35mA
	Sleep mode	TBD
	Operating range	-40 ℃ ~ +85 ℃
Environment	Storage temperature	-40 ℃ ~ +85 ℃
	Anti-vibration performance	2500g
EMC	According to E	EN61000 and GBT17626
MTBF	≥98	000 hours/time
Insulation resistance		≥100MΩ
Impact resistance	100g@11ms, th	ree direction (half sinusoid)
Anti-vibration	10gri	ms\10 ~ 1000Hz
Weight PCBA:≤25g (excluding cable)		
► ORDER INFOR	MATION	
DCM2 0B See 5: PCBA 6: shell case 0 TTL: UART TTL		

E.g.: DCM260B-232-68: Enclosure/RS232 output/Standard 68 protocol.


► PRODUCT SIZE

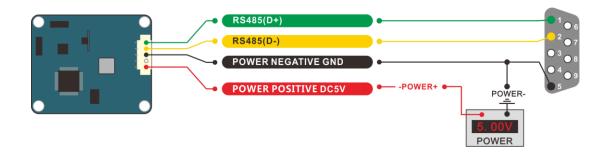
PCBA SIZE

PCBA size: L33×W27×H9mm Installation size: L28.3×W22.3×H2mm Ounting screws: 4 M3 screws(Copper screw)

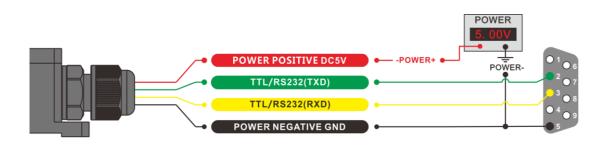
SHELL

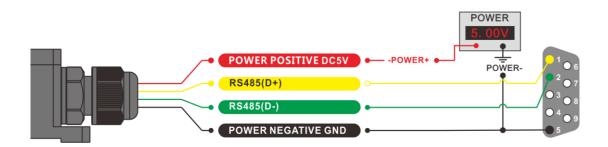
SIZE

Shell size: L55×W37×H24mm Installation size: L48×W28.6×H4mm ounting screws: 3 M4 screws(Copper screw)

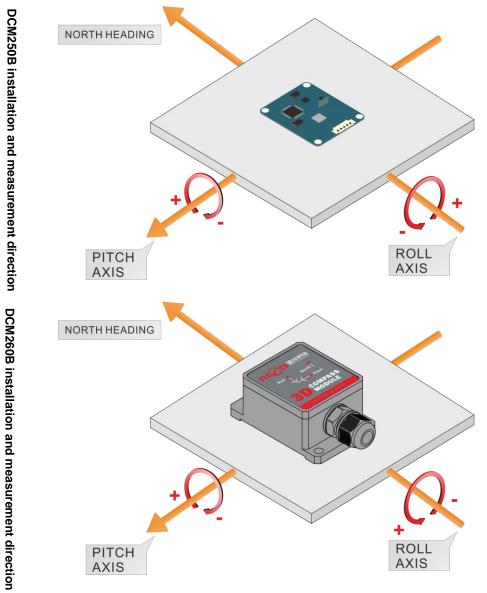


DCM250B/DCM260B HIGH ACCURACY 3D COMPASS


► CONNECTION


	RED	BLACK	YELLOW	GREEN
Color			RS232(RXD)	RS232(TXD)
Function	DC 5V	GND	TTL(RXD)	TTL(TXD)
		RS485(D-)	RS485(D+)	

	RED	BLACK	YELLOW	GREEN
Color			RS232(RXD)	RS232(TXD)
Function	DC 5V	GND	TTL(RXD)	TTL(TXD)
			RS485(D+)	RS485(D-)



► MEASUREMENT AND INSTALLATION

Because the azimuth of the DCM250B&260B three-dimensional electronic compass uses the principle of geomagnetism, it is necessary to choose the environment installation location with the smallest magnetic interference. Please install the product away from iron, magnets, motors and other magnetic objects. Even if there are these magnetic sources around, it needs to be kept away at least 40CM (different magnetic fields have different interference distance). In order to ensure product measurement accuracy, M3 anti-interference copper screws must be used during installation.

This product can compensate for moderate deviations in a stable magnetic environment, but cannot compensate for changing magnetic interference. Please pay attention to the magnetic field generated by the DC wire, because the magnitude of the magnetic field will change with the DC current. The battery is also a source of interference. Each installation is different and the user must evaluate the installation feasibility under all possible operating environments.

In a non-interference environment, the measured heading accuracy of this product is $\leq 1^{\circ}$, but scientific test methods are also crucial. Our recommended test method is: install this electronic compass on a vertical aluminum (non-magnetic other material) rod to make heading accuracy measurements (of course the rotating rod is perpendicular to the rotating platform, try to avoid large external magnetic fields interference). Doing so can reduce the radius of compass rotation, scientifically improve the measurement accuracy. This is only to provide laboratory installations, which must be handled flexibly for specific situations. For example: when installed on a car, this product is installed perpendicular to the direction of movement.

CALIBRATION METHOD

Prerequisites :

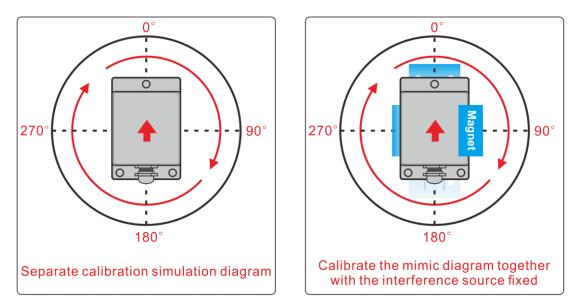
1) The accuracy of the test compass does not meet the requirements;

2) There is magnetic field interference in the compass installation environment.

This interference is fixed, and the distance between the interference magnetic field and the compass will not change after installation (for example: the compass is installed on an iron material, because iron will have magnetic field interference, which It is necessary to rotate and calibrate the iron together with the compass, and the iron will not be separated from the compass during use again. Once separated, it needs to be re-calibrated. If the size of the iron is not fixed, or the distance from the compass changes It is not fixed, this kind of interference cannot be calibrated, it can only be installed away from the distance, the safety distance is controlled above 40CM).

1) Use the DCM compass to properly connect to the RS232 communication port and turn on the power.

2) Send the calibration start command in hexadecimal format: "68 04 00 08 0C" (or click the


"CALI-START" start button of RION 3D debugging software)

3) The DCM compass will return a response command.

4) Rotate the compass one circle from 0° to 360° in situ to collect the magnetic field data around the compass. (The rotation speed should not be too fast, and it should be more than 40 seconds per circle.)

5) After returning to 0°, send the stop calibration command in hexadecimal format: "68 04 00 0A 0E", the calibration is successful. (or click the "CALI-SAVE" button of RION 3D debugging software)

Note: If the compass is installed in other supporting equipment, which has magnetic interference, please install the compass and rotate it with the supporting equipment to collect the interference data to ensure that the compass can accurately measure.

The starting point can be at any point of 360°, and it can rotate more than 1 circle on the spot Within 2 laps, the speed of rotation should be as uniform as possible, not too fast!

► COMMUNICATION 68 PROTOCOL

1. Data frame format: (8 data bits, 1 stop bit, no check, default rate 9600)

ldentifier	Data length	Add. code	Commandword	Data	checksum
(1byte)	(1byte)	(1byte)	(1byte)	field	(1byte)
68h					

Identifier: fixed at 68H.

Data length: the length from data length to checksum (including checksum).

Address code: the address of the acquisition module, the default is 00.

The data field changes according to the different content and length of the command word.

Checksum: The sum of data length, address code, command word and data field does not consider carry.

2. Command word analysis

Command	Meaning/ Example	Explanation
	C	•
0X04	Read Roll, Pitch,	Data field (Obyte)
	Heading at the same	No data field command
	time	
	Angle command 68 04 00 04 08	
0X84		
0804	Sensor replies E.g: 68 0D 00 84 00 10	DCM250: data domain (9byte) AA AB BB CC CD DD EE EF FF
	50 10 10 05 01 04 01 1C	AA AB BB:3 red bytes indicate Pitch;
		CC CD DD:3 blue bytes indicate Roll;
		EE EF FF:3 green bytes indicate Heading;
		AA AA BB are returned angle value of Pitch, is
		compress BCD code.
		00 10 50 The three red bytes are the angle value
		returned by Pitch, which is the compressed BCD
		code. The high-order 0 of the first byte is the sign
		bit (0 is positive, 1 is negative). 01 0 is a three-digit
		integer value, and 50 is a two-digit decimal value.
		The analysis method of other axis data is the same,
		the pitch angle is +10.50°;
		10 10 05 The three blue bytes are the return value of Poll, and the parsing method is the same as that
		of Roll, and the parsing method is the same as that of Pitch, the analytical angle is Roll: -010.05°;
		01 04 01 Green three-byte Heading return value,
		the parsing method is the same as Pitch, and the
		parsing angle is Heading: +104.01°.
0X84	Sensor replies	DCM260:data domain (9byte)
	E.g: 68 0D 00 84 00 10 50 10 10 05 01 04 01 1C	AA AB BB CC CD DD EE EF FF
	50 10 10 05 01 04 01 10	AA AB BB:3 red characters represent the Roll;
		CC CD DD :3 blue characters represent the pitch; EE EF FF :3 green characters for Heading angle;
		AA AA BB:Returns the angle value for Roll, the
		compressed BCD code;
		00 10 50 The three red bytes are the angle value
		returned by Roll, which is the compressed BCD
		code. The high-order 0 of the first byte is the sign
		bit (0 is positive, 1 is negative). 01 0 is a three-digit
		sit (o io poolitro, i lo nogativo). O i o lo a tinoo digit

		integer value, and 50 is a two The analysis method of other and the Roll angle is analyze 10 10 05 The three blue byte of Pitch, the parsing method Roll, the analytical angle is P 01 04 01 Green three-byte H the parsing method is the sar parsing angle is Heading: +1	axis data is the same, d as +10.50°; s are the return value is the same as that of itch:-010.05°; eading return value, me as Pitch, and the
<i>0X0</i> 6	Set magnetic declination command 68 06 00 06 02 08 16	Data field (2byte) SA AB S is the sign 0 positive 1 neg AA: two integers, B: a decima E.g: 02 08 is +20.8°	
<i>0X86</i>	Sensor response reply E.g: 68 05 00 86 00 8B	Data field (1byte) The number in the data field the sensor response 00:setting successfully	indicates the result of FF:setting failed
0X07	Read magnetic declination command 68 04 00 07 0b	Data field (0byte) No data field command	
0X87	Sensor response reply E.g: 68 06 00 87 02 08 97	Data field (2byte) The number in the data field the sensor response	indicates the result of
0X08	Start calibration command 68 04 00 08 0C	Data field (0byte) No data field command	
0X88	Sensor response reply E.g: 68 05 00 88 00 8D	Data field (1byte) The number in the data field the sensor response 00:Start success	indicates the result of FF:start failure
<i>ΟΧΟΑ</i>	Save calibration command 68 04 00 0A 0E	Data field (0byte) No data field command	
0X8A	Sensor response reply command E.g: 68 05 00 8A 00 8F	Data field (1byte) The number in the data field the sensor response 00:setting successfully	indicates the result of FF:setting failed
0X0B	Set communication baud rate command 68 05 00 0B 02 12	Data field (1byte) Baud rate:00 means 2400 02 means 9600(default) 04 means 38400	01 means 4800 03 means 19200 05 means 115200
0X8B	Sensor response reply command E.g: 68 05 00 8B 00 90	Data field (1byte) The number in the data field the sensor response 00:setting successfully	indicates the result of FF:setting failed
OXOF	Set module address command 68 05 00 0F 01 15	Data field (1byte) XX module address, the addr EF. Note: Our products have a ur you forget the address you	nified address: FF. If

DCM250B/DCM260B HIGH ACCURACY 3D COMPASS

		operation, you can use the FF address to operate the product and it will respond normally.
0X8F	Sensor response reply	Data field (1byte)
	command	The number in the data field indicates the result of
	E.g: 68 05 00 8F 00 94	the sensor response
		00:setting successfully FF:setting failed
0X0C	Set angle output mode 68 05 00 0C 00 11	Data field (1byte) 00: Q&A 01: Automatic output type Factory default: Q&A
0X8C	Sensor response reply	Data field (1byte)
	command	The number in the data field indicates the result of
	E.g: 68 05 00 8C 00 91	the sensor response
		00:setting successfully FF:setting failed

► NMEA0183 COMMUNICATION PROTOCOL

Communication NMEA0183 (ASCII)

Baud rate 4800 \9600\19200, could set(default as 19200, one start bit + 8 data bit+non-parity +1 stop bit)

Data protocol

Communicate use NMEA special sentence (ASCII).

After power on module, baud rate is 19200 as default and 0 data output.

During operation, compass output sentence as below:

\$PTNTHPR,X.X,A,X.X,A,X.XA*hh<cr><lf>

Heading ,pitch,roll

Set data refresh rate

Command	Description
#BAD=0*4A <cr><lf></lf></cr>	set 0-readouts per minute
#BAD=1*4B <cr><lf></lf></cr>	set 1-readout per minute
#BAD=2*48 <cr><lf></lf></cr>	set 2-readouts per minute
#BAD=3*49 <cr><lf></lf></cr>	set 3-readouts per minute
#BAD=4*4E <cr><lf></lf></cr>	set 6-readouts per minute
#BAD=5*4F <cr><lf></lf></cr>	set 12-readouts per minute
#BAD=6*4C <cr><lf></lf></cr>	set 20-readouts per minute
#BAD=7*4D <cr><lf></lf></cr>	set 30-readouts per minute
#BAD=8*42 <cr><lf></lf></cr>	set 60-readouts per minute
#BAD=9*43 <cr><lf></lf></cr>	set 120-readouts per minute
#BAD=10*7B <cr><lf></lf></cr>	set 180-readouts per minute
#BAD=11*7A <cr><lf></lf></cr>	set 300-readouts per minute

Baud rate set command

Command	Description
#BA4H=8T*2E <cr><lf></lf></cr>	Set baud rate as 4800
#BA4H=16T*11 <cr><lf></lf></cr>	Set baud rate as 9600
#BA4H=32T*17 <cr><lf></lf></cr>	Set baud rate as 19200

Activation message

#F33.6=1*52 When the baud rate is set, send this command to reset and activate.

Heading angle calibration command

#F33.4=0*51 <cr><if></if></cr>	#F33.4=0*51 <cr><if></if></cr>	Horizontal command
#F2FE.2=1*67 <cr><if></if></cr>	#F2FE.2=1*67 <cr><lf></lf></cr>	Horizontal command

Power off save function (This command takes effect only before the setting of baud rate

and frequency)

Start command		
#BA6S=1*6A	#BA6S=1*6A	send the command, the setting for baud rate and output rate will be saved after power off
#BA6S=0*6B	#BA6S=0*6B	send the command, the setting for baud rate and output rate will be invalid after power off